Stat 155 Lecture 23 Notes

Daniel Raban

April 26, 2018

1 Impossibility Theorems and Properties of Voting Systems

1.1 The Gibbard-Satterthwaite theorem

Last time we introduced Arrow's Impossibility theorem.

Theorem 1.1 (Arrow's Impossibility theorem). For $|\Gamma| \geq 3$, any ranking rule R that satisfies both IIA and unanimity is a dictatorship.

Here is another impossibility theorem.

Definition 1.1. A voting rule f is a function that takes the voters' preference profile π to the winner in Γ .

Definition 1.2. A voting rule f is *onto* the set Γ of candidates if, for all candidates $A \in \Gamma$, there is a preference profile π such that $f(\pi) = A$.

If f is not onto Γ , some candidate is excluded from winning.

Theorem 1.2 (Gibbard-Satterthwaite). For $|\Gamma| \geq 3$, any voting rule f that is onto Γ and is not strategically vulnerable is a dictatorship.

Proof. The proof is by contradiction; we use f to construct a ranking rule that violates Arrow's theorem. Suppose f is onto Γ , not strategically vulnerable, and not a dictatorship. Define $\triangleright = R(\pi)$ via

$$\begin{cases} A \triangleright B & f(\pi^{\{A,B\}}) = A, \\ B \triangleright A & f(\pi^{\{A,B\}}) = B, \end{cases}$$

where π^S maintains the order of candidates in S but moves them above all other candidates in all voters' preferences.

If f is onto Γ and not strategically vulnerable, then for all $S \subseteq \Gamma$, $f(\pi^S) \in S$, so \triangleright is complete; otherwise, in the path from a $\pi' \in f^{-1}(S)$ to π^S , some voter switch would

¹Kenneth Arrow was a professor of Operations Research and Economics at Stanford. He won the Nobel Prize in Economics in 1972 and is considered the founder of modern social choice theory.

demonstrate a strategic vulnerability. Also, \triangleright is transitive; the same argument shows that $f(\pi^{\{A,B,C\}}) = A$ implies $A \triangleright B$ and $A \triangleright C$, so cycles are impossible.

So R satisfies unanimity because $A \succ_i B$ implies that $\pi^{\{\hat{A},B\}} = (\pi^{\{A,B\}})^{\{A\}}$, so $A \triangleright B$. By a similar argument, R satisfies IIA. So by Arrow's impossibility theorem, R is a dictatorship. But because f is not a dictatorship, neither is R. So we have a contradiction.

1.2 Properties of voting systems

Here are some more properties of voting systems. Are these desirable? Are they realistic?

Definition 1.3. A voting system is *symmetric* if permuting voters does not affect the outcome.

Definition 1.4. A voting system is *monotonic* if changing one voter's preferences by promoting candidate A without changing any other preferences should not change the outcome from A winning to A not winning.

Definition 1.5. The *Condorcet winner criterion* is that if a candidate is majority-preferred in pairwise comparisons with any other candidate, then that candidate wins.

Definition 1.6. The *Condorcet loser criterion* is that if a candidate is preferred by a minority of voters in pairwise comparisons with all other candidates, then that candidate should not win.

Definition 1.7. The *Smith criterion* is that the winner always comes from the *Smith set*, the smallest nonempty set of candidates that are majority-preferred in pairwise comparisons with any candidate outside the set.

Definition 1.8. A voting system is *reversal symmetric* if when candidate A wins for some voter preference profile, candidate A does not win when the preferences of all voters are reversed.

Definition 1.9. Cancellation of ranking cycles is when if a set of $|\Gamma|$ voters have preferences that are cyclic shifts of each other (e.g. $A \succ_1 B \succ_1 C$, $B \succ_2 C \succ_2 A$, and $C \succ_3 A \succ_3 B$), then removing these voters does not affect the outcome.

Definition 1.10. Cancellation of opposing rankings is when if two voters have reverse preferences, then removing these voters does not affect the outcome.

Definition 1.11. Participation is when if candidate A wins for some voter pererence profile, then adding a voter with A > B does not change the winner from A to B.

Example 1.1. Which of these properties does instant runoff voting have? Recall that in instant runoff voting, we eliminate the candidate that is top-ranked by the fewest voters, remove that candidate from everyone's rankings and repeat.

- Instant runoff voting satisfies symmetry because permuting the voters does not affect the outcome.
- Instant runoff voting does not satisfy monotonicity, however; our example from the last two lectures of strategic voting is a counterexample to monotonicity.
- Instant runoff voting does not satisfy the Condorcet winner criterion. Here is an example where B is preferred over any candidate, but A wins.

	1st	2nd	3rd
30%	A	B	C
45%	C	B	A
25%	B	A	C

- Instant runoff voting satisfies the Condorcet loser criterion. If the Condorcet loser makes it to the last round, they will lose the pairwise vote in that round; so they cannot win.
- Instant runoff voting does not satisfy the Smith criterion. In the above example, the Smith set is $\{B\}$, but A wins instead of B.
- Instant runoff voting is not reversal symmetric. In the following example, reversing the preferences still makes candidate A the winner.

	1	2nd				2nd	
30%	A	B	C	30%	C	B	A
45%	C	B	A	$45\% \\ 25\%$	A	B	C
25%	B	A	C	25%	$\mid C \mid$	A	B

1.3 Positional voting rules

Definition 1.12. A positional voting rule is defined as follows. Let $a_1 \geq a_2 \geq \cdots \geq a_N$. For each candidate, assign a_i points for each voter that assigns that candidate rank i. The candidate with the largest total wins.

Example 1.2. Borda² count is the positional voting rule with a_i given by $N, N-1, \ldots, 1$.

Example 1.3. Plurality is the positional voting rule with a_i given by $1, 0, \dots, 0$.

Example 1.4. Approval voting is the rule with a_i given by $1, 1, \ldots, 1, 0, \ldots, 0$.

Positional voting rules satisfy symmetry, monotonicity and cancellation of ranking cycles. However, they do not necessarily satisfy the Condorcet winner criterion.

²Jean-Charles de Borda was an 18th century French naval commander, scientist, and inventor. He created ballistics, mapping and surveying instruments, pumps, and metric trigonometric tables.